

INTERACTION OF PFOS, PFOA AND 8:2 FTOH WITH HUMAN, RAT, AND MICROBIAL CYTOCHROME P450s: SIMILARITIES AND DIFFERENCES

Vladimir BEŠKOSKI^{1,2,3}, Takeshi NAKANO⁴, Chisato MATSUMURA⁵, Katsuya YAMAMOTO⁵, Atsushi YAMAMOTO⁶, Mamoru MOTEGI⁷, Hideo OKAMURA⁸, Hideyuki INUI²

¹Faculty of Chemistry, University of Belgrade, Belgrade, Serbia; ²JSPS Invitation Fellowship Program for Research in Japan; ³Research Center for Environmental Genomics, Kobe University, Kobe, Japan; ⁴Research Center for Environmental Preservation, Osaka University, Osaka, Japan; ⁵Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan; ⁶Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan; ⁷Center for Environmental Science in Saitama, Saitama, Japan; ⁸Graduate School of Maritime Sciences, Kobe University, Kobe, Japan

Introduction

Chemicals known as perfluoroalkyl and polyfluoroalkyl substances (PFASs) do not occur naturally, but because of wide use in chemical production since the 1950s, they can be found in the environment. Currently, the two most persistent and toxic PFASs are perfluorooctanoic acid (PFOA, C7F15COOH) and perfluorooctane sulfonic acid (PFOS, C₈F₁₇SO₃H). PFOS including the form of salts and its precursor, perfluorooctane sulfonyl fluoride, are classified as persistent organic pollutant (POPs) according to Stockholm Convention on POPs. A ubiquitous distribution of PFASs in wildlife and humans is confirmed [1-3] and thus it is important to determine mammalian and microbial metabolisms of PFOS and PFOA with cytochrome P450 (CYP) monooxygenases to understand distribution and impact of PFASs on human and wildlife

P450 enzymes play important physiological roles in the detoxification of xenobiotics. For example, CYP1A1 proteins can metabolize some dioxins and PCBs by hydroxylation, but the activities of human and rat CYP1A1 proteins are very different. Recently it has been demonstrated [4] that rat CYP1A1 metabolized 3,3',4,4',5pentachlorobiphenyl (PCB126) into 4-OH-3,3',4',5-tetrachlorobiphenyl and 4-OH-3,3',4',5,5'-pentachlorobiphenyl, but human CYP1A1 did not metabolize. Furthermore, indigenous microorganisms are a key for biotransformation and biodegradation of organic molecules such as xenobiotics, PCBs and pesticides as well as oil hydrocarbons [5-7]. Possible mechanisms of aerobic microbial biotransformation/biodegradation of fluorinated organic compounds in the polluted environment may include catalysis by fungal or bacterial CYP monooxygenases. Material and methods

In order to determine behavior and metabolism of PFOS, PFOA and 8:2 FTOH, in vitro oxidation experiments of PFASs with rat CYP monooxygenases were conducted. Yeast

with transformed rat CYP1A1 gene and human CYP1A1 gene were grown in SD media (N-base 6.7 g/L; Glucose 80 g/L and Histidine 160 mg/L) and YPAD media (yeast extract 10 g/L; BactoPeptone 20 g/L; Adenin sulphate 40 mg/L and Glucose 80 g/L). Cytochrome from Bacillus megaterium CYP102A1 (also referred to as P450 BM-3), were used for studying interaction of PFASs with microbial cytochromes.

Hydroxylation of PFOS and PFOA with rat CYP1A1 microsomal fraction was studied: Microsomal fraction (protein concentration 40pmol), PFOS and PFOA (100 ppb) and NADPH were used. Concentration of human CYP1A1 was to low to analyze interactions.

The extracts were loaded to Solid Phase Extraction cartridge (Presep PFC-II, Wako Pure Chemical Industries) and MeOH eluates were analyzed using LC/MS/MS.

Competition for CYP binding between chlorotoluron (CT) and PFAS were studied. Herbicide chlortoluron was used as positive control for CYP binding.

Results and discussion

The concentration of microsomal fraction based on CO difference spectroscopy of rat CYP1A1 was 0.3pmol/µL (Fig 1).

1. Products of possible hydroxylation of PFAS after incubation with CYP1A1 were studied using 6 model systems (Table 1).

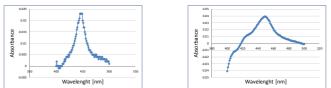
Table 1. Model systems and recovery rates

	MF	NADPH	PFOS	PFOA	ppb	%	CT PFOS
1.	+	+	+	-	80.1	80	
2.	+	+	-	+	81.8	82	
3.	+	-	+	-	80.6	81	" ¤н, ' Ґ Ì Ӻ Ґ Ì Ӻ ́ Ì Ӻ ́ I
4.	+	-	-	+	96.2	96	PFOA 8:2 FTOH
5.	-	+	+	-	82.3	82	
6.	-	+	-	+	99.5	99	᠋᠄ᢅᢞᢞᢞᢝ᠈ᠳ᠕ᡘᡘᡘᡘᡘ

MF-microsomal fraction

6.	800 800_5 140(02_020 80 (80, 141) 100 1	502 508 18 22 18 5	576 75 156			S MAN IN Charves 55 481.05 - 75 9 (PF050) 3 Tel Atte	401 Hall (40352) (22 Ste (Mr. 141) 100 • 3 ⁴	1231040				PFC	DA			4 Mills at 13 Channet 55 4153 > 368 1 (PPC)41 2 354 Ann
5.	550 550 10000_01950(00, 10)	540 548 519 557 648 19 27 201 192	55 58 533,557	F	PFOS	600 635 5 MSH of Charves SS- 401.00 × 71 5 PT 0001 2 MS AND	436 140522 (019 5m (4m, 1xt) 100 14	ald 5.81	sis	5.18	5.15	530	521 521 6 16	530	5.15	5.81 5.8 4 MPA of 10 Channes 65- 4153 + 508 1 (PPCAET) 3.5 Arts Arts
4.	550 550 H0002_010 Ser (He, He) 100	662 682 082	678 688 678 23 23	5.85	530 576	600 638 5 MSN of 3 Charmele ES- 288 05 > 36 94 FORT 2 Teel 2 Teel 2 Teel 2 Teel	436 182522,018 Sm (Mr, 1rd)	ald Shi	sis	5.18	5.IS	520	52	530	538	548 548 4 MPM of 10 Channels CS- 4153 5 408 1 (PFC4ET) 3 Stee Arcs
3.	534 535 HXXX2_517 54 (Hr, W) WXX2_517 54 (Hr, W) HXX2_517 54 (Hr, W) HXX2_517 54 (Hr, W)	641 556 19 37 2000 100 100	5h 5h 17347	5.80	s.30 6.06	ode ode 5. MRN of 1 Charves 55- dil co > 76 o Proces 2. Test Ann	436 90202_017.5m (Mr. tot)	430 530 457 16 460	sin	sla	ola	5.26	sh	274	270	oka oka 4 MSN at 10 Chamela ES- 2531 > 388 1 (PFCMT) 2334 - 388 1 (PFCMT) 23545 2499
2.	538 535 140002_05 84 (Mr. 5r) 4 530 554 4 0 1 2	sio sis sis	575 5 8	5.85	sio sis	600 635 3 Min II Chaves 55 483.05 - 75 9 (FOST) 3 Ted Atta	4.90 100000_001_001_000_000_000_000_000_000	ahi shi	5.0	6.18	675	5.20	5.28	5.31	638	5.40 5.40 4. MMM II 10 Chance 25 413.1 > 568.1 (PC041) 2.339 Ann
1.	530 535 102522_0155m(m, m) 100 100 100 100 100 100 100 100 100 10	540 546 519 661 76 21 76 21 76 21	sta sia	sis	sio sis	edo els 5 Millio di Charren Gi- Anton - 71 organizzaria Anto Anton Anton	430 90202_015 Sm (Mr, 1x1) 90 #	439 530 439 1527	'sla''	- 9 la -	ola" -	520	610	271	ola -	548 548 4 MSM of 10 Channell CS- 4153 > 388 1 (PF CMT) 2 2546 2499

Fig 1. LC/MS chromatograms of 6 model systems extracts


However, recovery rate is suggesting that PFOS and PFOA interact differently with rat CYP1A1 binding place. Recovery rate of PFOS from solutions 3 and 5 indicate reduction because of abiotic factors.

米大阪市

High recovery rate in 4 and 6 of PFOA indicate that decrease in solution 2 is possible consequences of interaction of PFOA with MF and NADPH.

Oxidation of PFOA could lead to change of polarity and reduction of recovery rate. However, new peaks, hydroxylation products were not detected using LC/MS/MS.

2. Binding interaction of CT, PFOS, PFOA and 8:2 FTOH with rat CYP1A1 and microbial CYP102A1

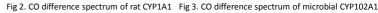


Fig 4a-b. Rat CYP1A1 spectrum of CT binding

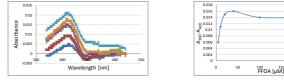


Fig 5a-b. Microbial CYP102A1 spectrum of PFOA binding

Table 2. Kd values of CT, PFOS, PFOA and 8:2 FTOH binding to rat CYP1A1 and microbial CYP102A1

Kd - rat CYP 1A1 [μM]											
СТ	PFOS	PFOA 8:2 FTOH CT & PFOS PFOA				PFOA 8:2 FTOH CT & I			CT & 8:2FTOH		
10.2	44.2	3.94 -42.6 -1.47			0.164	-4.76					
Kd - microbial CYP102A1 [μM]											
СТ	PFOS	PFOA	8:2 FTOH	CT & PFOS	CT & PFOA	CT & 8:2FTOH					
8.62	37.9	1.61	-0.00986	10.3	7.50	-2.32					

Rat CYP1A1 Kd for CT is 10.2 µM, for PFOS is 44.2 µM and for PFOA is 3.94 µM. Microbial CYP102A1 Kd for CT is 8.62 µM, for PFOS is 37.9 µM and for PFOA is 1.61 $\underline{\mu}M.$ These results suggest that these three substrates are capable to enter binding pocket of P450 and to interact with this enzyme although CT is structurally not similar to PFOS and PFOA. Furthermore, Kd values suggest that binding affinity increase in the following order: PFOS<CT<PFOA both in mammalian and microbial cytochroms tested.

During incubation with 8:2 FTOH binding in the binding pocket was not determined in Rat CYP1A1 nor microbial CYP102A1. However, during incubation of Rat CYP1A1 and Microbial CYP102A1 cytochromes with CT & 8:2 FTOH it was observed that binding of CT was inhibited. In model systems with CT + PFOS and CT + PFOA it was observed that kinetics of the reaction did not followed the hyperbolic relationship between the rate of reaction and the concentration of substrate. This data suggest that there is a competition between CT and PFOS as well as CT and PFOA for the binding pocket of P450.

Acknowledgements: This research was supported by Japan Society for the Promotion of Science. Microbial CYP102A1 was kindly provided by Dr. Osami Shoji, Nagoya University. References

1. Haug, L.S., et al., Environ. Int. 37, (2011) 687-693

2. Croes K., et al., Chemosphere 89, (2012) 988-994;

3. Domingo J.L., Environ. Int. 40, (2012) 187-195;

Yamazaki K., et al., J. Biochem. 149, (2011) 487–494;
Winogradsky, S., C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 178 (1924) 1236-1239;

6. Gojgic-Cvijovic, G., et al., Biodegradation 23, (2012) 1-14;

7. Dionisi, D., ChemBioEng Rev 1, (2014) 67-82;