What is acrylamide - I

Q.1 What is acrylamide	
------------------------	--

A.1 Acrylamide is a chemical used primarily for industrial purposes.

Acrylamide (CAS 79–06–1 M.W.:71

Q.2 Is there acrylamide in food?

A.2 Reseachers have found acrylamide in certain foods that were heated to a temperature above 120 degree Celsius.

Foods	Acrylamide conc (ng/g)			
Potato chips	117~3,770			
French fries	59~5,200			
Potato(Raw)	<10~50			
Confectionaly	18~3,324			
Cereal	11~1,057			
Instant coffee	195~4,948			
Toasted tea, oolong	<9~567			
Roasted barley	140~578			
Bottled black olive	123~1,925			

Acrylamide concentration in foods (example)

Codex Alimentarius commission (2006)

What is acrylamide - II

Q.3 How does cooking produce acrylamide?

A.3 When heated to high temperature in the presence of a kind of amino acid and certain sugars can form acrylamide. High-temperature cooking methods, such as frying, baking, or broiling, have been found to produce acrylamide.

Q.4 What are health effects of acrylamide ?

A.4 High levels of acrylamide in the workplace have been shown to cause neurogical damage. And studies in rodent models have found that acrylamide exposure poses a risk for several types of cancer.

The guideline to prevent and reduce formation of acrylamide in food is enacted.

Necessity of reducing acrylamide in foods

U What is acrylamide

Extract from National Cancer Institute website

http://www.cancer.gov/cancertopics/factsheet/Risk/acrylamide-in-food

CODEX prepared "CODE OF PRACTICE FOR THE REDUCTION OF ACRYLAMIDE IN FOODS" CAC/RCP 67-2009

In Japan, Ministry of agriculture, Forestry and fisheries enforces to follow the reduction of acrylamide in food

The guidance covers three strategies for reducing acrylamide formation in particular products: i) Raw materials;

Developing of new acrylamide measurement method

Generally, LC/MS, LC/MS/MS, GC/MS are used for analysis of acrylamide But these conventional analyses are high cost (especially initial cost) and need skilled person. These methods are difficult to analysis many samples at once.

The strategy of acrylamide measurement

Since an antibody to acrylamide cannot be raised in animals by immunization simply using acrylamide, an acrylamide derivative (3-CTBA; 3-[(2-carbamoylethyl)thio] benzoic acid) was employed as a hapten.

3-CTBA is too small to establish the sanwich assay. So, we select Competitive ELISA method

ii) Control / addition of other ingredients; and iii) Food processing and heating.

The measurement of acrylamide in food is necessary. Because have to compare the data which was measured before doing the reduction method and after it. Then have to evaluate the method whether useful.

Summary of measurement methods

Acrylamide is extracted from the test food sample into water.

Apply the extract to a solid-phase extraction cartridge The time required: 2 hours

(2) Derivatization reaction

3-MBA (3-Mercaptobenzoic Acid) add to "acrylamide standards" and "test food sample extracts" In this step, acrylamide is quantitatively converted to 3-CTBA by reacting with a large excess of 3-MBA The time required: 2 hours

3 Enzyme Immunoassay: EIA

Apply the "derivatized samples" to EIA The time required: 2 hours

We developed the new method which is faster, easier, lower cost and measures many sample.

measurement methods - 1

Homogenize the test food sample by a method appropriate to

the nature of the food.

 $\overline{}$

three consecutive off-and-on cycles of extraction at 30 sec

intervals using a MILLCER (Type IFM-800DG, Iwatani Co. Ltd.,

Tokyo, Japan), a safety food

processor like a Waring blender, is also applicable

Centrifuge the tube containing the homogenate at $3,000 \times g$

(preferably $12,000 \times g$) for 20 min at 20-30°C and retain the

To the conditioned cartridge, apply a 1.0 mL aliquot of the

supernatant in then elute with 3.0 mL distilled water.

supernatant

Extraction)

measurement methods - 2

measurement methods - 3

Calibration curve and Detection limit

Extracted by MILLCER

Cross reactivity

EIA

- ψ Dispensing "derivatized samples (50 μ L/well) ψ Dispensing "Rabbit Anti-3-CTBA Antibody" $(50 \,\mu \,\text{L/well})$
- (Standing for $1 \text{ h at } 20-30^{\circ}\text{C}$)
- ψ wash 6 times
- ↓ Dispensing Enzyme-conjugated Goat Anti**rabbit IgG Antibody.** (100 μ L/well)
- (Standing for 30 min at 20-30°C)
- **↓ Wash**x6 times
- \checkmark **Dispensing Enzyme Substrate** (100 μ L/well) (Standing for 30 min at 20-30°C)
- \downarrow **Dispensing Stopping Solution** (100 μ L/well)
- \checkmark Measurement of absorbance
- 450 nm (the primary wavelength) and 610-650 nm (the secondary wavelength)

Concentration (nM)

Cross reactivity (Acrylamide : 100%)

Structual analog	IC ₅₀ (nM)	1/IC ₅₀ (nM)	Cross reactivity	
Acrylamide	430	0.00233	100%	
Metacrylamide	60000	0.00002	0.72%	
Acrylonitrile	30000	0.00003	1.43%	
Acrylic acid	>1000000	<0.00001	<0.04%	
Maleic acid	>1000000	<0.00001	<0.04%	
Maleamicacid	>1000000	<0.000001	<0.04%	

Acrylamide

Metacrylamide

Acrylonitrile

Acrylic acid

Maleic acid

Maleamic acid

Calculation of the acrylamide concentration

Correlation with LC/MS method -1

Correlation with LC/MS method -2

Advantage of EIA method

	ELISA	Conventional method
Initial cost	Inexpensive (Plate reader)	Expensive(GC/MS, LC/MS, LC/MS/MS)
Running/maintenance cost	Easy and low cost	Expensive - skilled worker
Measurment	Easy	Complicated
Analyze time	Short	Long
Sensitivity	$ng/mL(\mu g/kg)$	$ng/mL(\mu g/kg)$
Accuracy	±20%	±5%
Notes	Analyse by myself	Analysis_contract_service
Analysys cost	3,000JPY/Sample	
Total analysis time	6hours	One week

340

333

L A	₽ ¥						Unrefined sugar	Suga
	F						cocoa	Ca
							Black chocolate	ca
0	500	1000	1500	2000	2500	3000	Broiled Tofu	Soy
							Fried Tofu	Soy
LC/MS (pg/g food)					Toasted tea leaf	Теа		
						Black tea leaf	Теа	
							Green tea leaf	To

Acrylamide concentration

(ng/g foods)

EIA

 $206 \pm$

186 ±

N.D.

192 ±

92 ±

47 ±

N.D.

N.D.

N.D.

125 ±

33 ±

 $208 \pm$

110 ±

 2296 ± 28

103 ±

 359 ± 11

 306 ± 2

LC/MS

182

171

N.D.

164

410

243

49

93

99

43

2031

230

162

75

Conclusion-1

- I. we established a competitive enzyme immunoassay. **II.** The limit of detection of this immunoassay was 0.9ng/mL. **III.The measuring range were 3ng/mL to 200ng/mL.**
- **IV.The cross reactivity of structural analogues were that** acrylonitrile was 1.4%, methacrylamide was 0.7%, acrylic acid, maleic acid and maleamic acid were under 0.04%.
- V. The correlation coefficient between the measured value by instrumental analysis and by ELISA were 0.98 to 0.99 (R² value).
- VI.This method can measure 24 samples at the same time and finish within 4.5 hours.

Conclusion - 2

Finally, we developed simple and easy analysis for acrylamide using enzyme immunoassay.

Now we attempt to increase the sensitivity of this method and to use for environmental chemistry.

